Extensions 1→N→G→Q→1 with N=C32 and Q=C3:Dic3

Direct product G=NxQ with N=C32 and Q=C3:Dic3
dρLabelID
C32xC3:Dic336C3^2xC3:Dic3324,156

Semidirect products G=N:Q with N=C32 and Q=C3:Dic3
extensionφ:Q→Aut NdρLabelID
C32:1(C3:Dic3) = C33:4C12φ: C3:Dic3/C6S3 ⊆ Aut C32108C3^2:1(C3:Dic3)324,98
C32:2(C3:Dic3) = He3:6Dic3φ: C3:Dic3/C6S3 ⊆ Aut C32366C3^2:2(C3:Dic3)324,104
C32:3(C3:Dic3) = C34:C4φ: C3:Dic3/C32C4 ⊆ Aut C3236C3^2:3(C3:Dic3)324,163
C32:4(C3:Dic3) = C3xC33:5C4φ: C3:Dic3/C3xC6C2 ⊆ Aut C32108C3^2:4(C3:Dic3)324,157
C32:5(C3:Dic3) = C34:8C4φ: C3:Dic3/C3xC6C2 ⊆ Aut C32324C3^2:5(C3:Dic3)324,158

Non-split extensions G=N.Q with N=C32 and Q=C3:Dic3
extensionφ:Q→Aut NdρLabelID
C32.1(C3:Dic3) = C33:Dic3φ: C3:Dic3/C6S3 ⊆ Aut C32366-C3^2.1(C3:Dic3)324,22
C32.2(C3:Dic3) = He3.3Dic3φ: C3:Dic3/C6S3 ⊆ Aut C321086-C3^2.2(C3:Dic3)324,23
C32.3(C3:Dic3) = He3:Dic3φ: C3:Dic3/C6S3 ⊆ Aut C321086-C3^2.3(C3:Dic3)324,24
C32.4(C3:Dic3) = 3- 1+2.Dic3φ: C3:Dic3/C6S3 ⊆ Aut C321086-C3^2.4(C3:Dic3)324,25
C32.5(C3:Dic3) = C33.Dic3φ: C3:Dic3/C6S3 ⊆ Aut C32108C3^2.5(C3:Dic3)324,100
C32.6(C3:Dic3) = He3.4Dic3φ: C3:Dic3/C6S3 ⊆ Aut C321086-C3^2.6(C3:Dic3)324,101
C32.7(C3:Dic3) = C9:Dic9φ: C3:Dic3/C3xC6C2 ⊆ Aut C32324C3^2.7(C3:Dic3)324,19
C32.8(C3:Dic3) = C32:2Dic9φ: C3:Dic3/C3xC6C2 ⊆ Aut C32366C3^2.8(C3:Dic3)324,20
C32.9(C3:Dic3) = C3xC9:Dic3φ: C3:Dic3/C3xC6C2 ⊆ Aut C32108C3^2.9(C3:Dic3)324,96
C32.10(C3:Dic3) = C32:5Dic9φ: C3:Dic3/C3xC6C2 ⊆ Aut C32324C3^2.10(C3:Dic3)324,103
C32.11(C3:Dic3) = C3xHe3:3C4central extension (φ=1)108C3^2.11(C3:Dic3)324,99

׿
x
:
Z
F
o
wr
Q
<