extension | φ:Q→Aut N | d | ρ | Label | ID |
C32.1(C3⋊Dic3) = C33⋊Dic3 | φ: C3⋊Dic3/C6 → S3 ⊆ Aut C32 | 36 | 6- | C3^2.1(C3:Dic3) | 324,22 |
C32.2(C3⋊Dic3) = He3.3Dic3 | φ: C3⋊Dic3/C6 → S3 ⊆ Aut C32 | 108 | 6- | C3^2.2(C3:Dic3) | 324,23 |
C32.3(C3⋊Dic3) = He3⋊Dic3 | φ: C3⋊Dic3/C6 → S3 ⊆ Aut C32 | 108 | 6- | C3^2.3(C3:Dic3) | 324,24 |
C32.4(C3⋊Dic3) = 3- 1+2.Dic3 | φ: C3⋊Dic3/C6 → S3 ⊆ Aut C32 | 108 | 6- | C3^2.4(C3:Dic3) | 324,25 |
C32.5(C3⋊Dic3) = C33.Dic3 | φ: C3⋊Dic3/C6 → S3 ⊆ Aut C32 | 108 | | C3^2.5(C3:Dic3) | 324,100 |
C32.6(C3⋊Dic3) = He3.4Dic3 | φ: C3⋊Dic3/C6 → S3 ⊆ Aut C32 | 108 | 6- | C3^2.6(C3:Dic3) | 324,101 |
C32.7(C3⋊Dic3) = C9⋊Dic9 | φ: C3⋊Dic3/C3×C6 → C2 ⊆ Aut C32 | 324 | | C3^2.7(C3:Dic3) | 324,19 |
C32.8(C3⋊Dic3) = C32⋊2Dic9 | φ: C3⋊Dic3/C3×C6 → C2 ⊆ Aut C32 | 36 | 6 | C3^2.8(C3:Dic3) | 324,20 |
C32.9(C3⋊Dic3) = C3×C9⋊Dic3 | φ: C3⋊Dic3/C3×C6 → C2 ⊆ Aut C32 | 108 | | C3^2.9(C3:Dic3) | 324,96 |
C32.10(C3⋊Dic3) = C32⋊5Dic9 | φ: C3⋊Dic3/C3×C6 → C2 ⊆ Aut C32 | 324 | | C3^2.10(C3:Dic3) | 324,103 |
C32.11(C3⋊Dic3) = C3×He3⋊3C4 | central extension (φ=1) | 108 | | C3^2.11(C3:Dic3) | 324,99 |