Extensions 1→N→G→Q→1 with N=C32 and Q=C3⋊Dic3

Direct product G=N×Q with N=C32 and Q=C3⋊Dic3
dρLabelID
C32×C3⋊Dic336C3^2xC3:Dic3324,156

Semidirect products G=N:Q with N=C32 and Q=C3⋊Dic3
extensionφ:Q→Aut NdρLabelID
C321(C3⋊Dic3) = C334C12φ: C3⋊Dic3/C6S3 ⊆ Aut C32108C3^2:1(C3:Dic3)324,98
C322(C3⋊Dic3) = He36Dic3φ: C3⋊Dic3/C6S3 ⊆ Aut C32366C3^2:2(C3:Dic3)324,104
C323(C3⋊Dic3) = C34⋊C4φ: C3⋊Dic3/C32C4 ⊆ Aut C3236C3^2:3(C3:Dic3)324,163
C324(C3⋊Dic3) = C3×C335C4φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C32108C3^2:4(C3:Dic3)324,157
C325(C3⋊Dic3) = C348C4φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C32324C3^2:5(C3:Dic3)324,158

Non-split extensions G=N.Q with N=C32 and Q=C3⋊Dic3
extensionφ:Q→Aut NdρLabelID
C32.1(C3⋊Dic3) = C33⋊Dic3φ: C3⋊Dic3/C6S3 ⊆ Aut C32366-C3^2.1(C3:Dic3)324,22
C32.2(C3⋊Dic3) = He3.3Dic3φ: C3⋊Dic3/C6S3 ⊆ Aut C321086-C3^2.2(C3:Dic3)324,23
C32.3(C3⋊Dic3) = He3⋊Dic3φ: C3⋊Dic3/C6S3 ⊆ Aut C321086-C3^2.3(C3:Dic3)324,24
C32.4(C3⋊Dic3) = 3- 1+2.Dic3φ: C3⋊Dic3/C6S3 ⊆ Aut C321086-C3^2.4(C3:Dic3)324,25
C32.5(C3⋊Dic3) = C33.Dic3φ: C3⋊Dic3/C6S3 ⊆ Aut C32108C3^2.5(C3:Dic3)324,100
C32.6(C3⋊Dic3) = He3.4Dic3φ: C3⋊Dic3/C6S3 ⊆ Aut C321086-C3^2.6(C3:Dic3)324,101
C32.7(C3⋊Dic3) = C9⋊Dic9φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C32324C3^2.7(C3:Dic3)324,19
C32.8(C3⋊Dic3) = C322Dic9φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C32366C3^2.8(C3:Dic3)324,20
C32.9(C3⋊Dic3) = C3×C9⋊Dic3φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C32108C3^2.9(C3:Dic3)324,96
C32.10(C3⋊Dic3) = C325Dic9φ: C3⋊Dic3/C3×C6C2 ⊆ Aut C32324C3^2.10(C3:Dic3)324,103
C32.11(C3⋊Dic3) = C3×He33C4central extension (φ=1)108C3^2.11(C3:Dic3)324,99

׿
×
𝔽